《Numerical Heat Transfer Part B-fundamentals》重点专注发布工程技术-力学领域的新研究,旨在促进和传播该领域相关的新技术和新知识。鼓励该领域研究者详细地发表他们的高质量实验研究和理论结果。该杂志创刊至今,在工程技术-力学领域,有较高影响力,对来稿文章质量要求较高,稿件投稿过审难度较大。欢迎广大同领域研究者投稿该杂志。
CiteScore | SJR | SNIP | CiteScore排名 | |||
---|---|---|---|---|---|---|
2.4 | 0.241 | 0.653 | 学科类别 | 分区 | 排名 | 百分位 |
大类:大类:Mathematics
小类:小类:NumericalAnalysis
|
Q2 | 38/88 | 57% | |||
大类:大类:Mathematics
小类:小类:MechanicsofMaterials
|
Q3 | 238/398 | 40% | |||
大类:大类:Mathematics
小类:小类:ModelingandSimulation
|
Q3 | 198/324 | 39% | |||
大类:大类:Mathematics
小类:小类:CondensedMatterPhysics
|
Q3 | 280/434 | 35% | |||
大类:大类:Mathematics
小类:小类:ComputerScienceApplications
|
Q3 | 536/817 | 34% |
按JIF指标学科分区 | 收录子集 | 分区 | 排名 | 百分位 |
---|---|---|---|---|
学科:MECHANICS | SCIE | Q3 | 106 / 170 | 37.9% |
学科:THERMODYNAMICS | SCIE | Q3 | 45 / 76 | 41.4% |
按JCI指标学科分区 | 收录子集 | 分区 | 排名 | 百分位 |
---|---|---|---|---|
学科:MECHANICS | SCIE | Q4 | 139 / 170 | 18.53% |
学科:THERMODYNAMICS | SCIE | Q4 | 59 / 76 | 23.03% |
文章名称
引用次数
A coupled volume of fluid and level set method based on analytic PLIC for unstructured quadrilateral grids
8
A three-field smoothed formulation for partitioned fluid-structure interaction via nonlinear block-Gauss-Seidel procedure
6
A novel parallel two-step algorithm based on finite element discretization for the incompressible flow problem
5
A volume of fluid method algorithm for simulation of surface tension dominant two-phase flows
5
Development of a mass-preserving level set redistancing algorithm for simulation of rising bubble
4
Meshless local Petrov Galerkin method for 2D/3D nonlinear convection-diffusion equations based on LS-RBF-PUM
4
Heat conduction analysis for irregular functionally graded material geometries using the meshless weighted least-square method with temperature-dependent material properties
4
Topology optimization of heat and mass transfer problems in two fluids-one solid domains
4
Element differential method with the simplest quadrilateral and hexahedron quadratic elements for solving heat conduction problems
4
A radial integration boundary element method for solving transient heat conduction problems with heat sources and variable thermal conductivity
4





